Extensions 1→N→G→Q→1 with N=C32 and Q=S3xC7

Direct product G=NxQ with N=C32 and Q=S3xC7
dρLabelID
S3xC3xC21126S3xC3xC21378,54

Semidirect products G=N:Q with N=C32 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
C32:1(S3xC7) = C7xC32:C6φ: S3xC7/C7S3 ⊆ Aut C32636C3^2:1(S3xC7)378,34
C32:2(S3xC7) = C7xHe3:C2φ: S3xC7/C7S3 ⊆ Aut C32633C3^2:2(S3xC7)378,41
C32:3(S3xC7) = C3:S3xC21φ: S3xC7/C21C2 ⊆ Aut C32126C3^2:3(S3xC7)378,56
C32:4(S3xC7) = C7xC33:C2φ: S3xC7/C21C2 ⊆ Aut C32189C3^2:4(S3xC7)378,58

Non-split extensions G=N.Q with N=C32 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
C32.(S3xC7) = C7xC9:C6φ: S3xC7/C7S3 ⊆ Aut C32636C3^2.(S3xC7)378,35
C32.2(S3xC7) = D9xC21φ: S3xC7/C21C2 ⊆ Aut C321262C3^2.2(S3xC7)378,32
C32.3(S3xC7) = C7xC9:S3φ: S3xC7/C21C2 ⊆ Aut C32189C3^2.3(S3xC7)378,40

׿
x
:
Z
F
o
wr
Q
<